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WEIGHTED DERANGEMENTS

AND LAGUERRE POLYNOMIALS

BY

Dominique FOATA AND Doron ZEILBERGER

1. Introduction. — One of the harbingers of the current combina-
torization of the theory of special functions was a remarkable result of
GILLIS and EVEN [7] that gave a certain combinatorial interpretation to
the linearization coefficients of the simple Laguerre polynomials Ln(x).
Let

(
L

(α)
n (x)

)
be the sequence of the (general) Laguerre polynomials that

may be defined by their generating function

(1.1)
∞∑
n=0

L(α)
n (x)un = (1− u)−α−1 exp

−xu
1− u

,

the simple Laguerre polynomials being defined by Ln(x) = L0
n(x) (α = 0).

Furthermore, for each positive integer m and each sequence (n1, . . . , nm)
of nonnegative integers let

(1.2) A(n1, . . . , nm;α) = (−1)n1+···+nm
∫ ∞

0

( m∏
i=1

L(α)
ni (x)

)
xαe−x dx

and

(1.3) I(n1, . . . , nm;α) =
1

Γ(α+ 1)
n1! . . . nm!A(n1, . . . , nm;α).

Then GILLIS and EVEN [7] found a combinatorial interpretation for
I(n1, . . . , nm; 0) (α = 0) and deduced from that interpretation the fact
that I(n1, . . . , nm; 0) was positive. The positivity property was immedi-
ately reproved by ASKEY and his followers [1, 2, 3, 8] by means of analytical
methods and reincluded in a more general special function set-up. As they
noticed, the generating function (1.1) yields the identity :
(1.4)∑

A(n1, . . . , nm;α)xn1
1 . . . xnmm =

Γ(α+ 1)
(1− σ2 − 2σ3 − · · · − (m− 1)σm)α+1

,
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where n1, . . . , nm runs over all nonnegative integers and σj denotes the
j-th elementary symmetric function in x1, . . . , xm. As it was shown by
ASKEY and his coauthors, the positivity of I(n1, . . . , nm;α) is an imme-
diate consequence of (1.4) and it holds for α > −1. In [1, p. 857–858]
the authors were very close to finding a combinatorial interpretation of
I(n1, . . . , nm;α) for an arbitrary α. It is the purpose of this paper to
provide one by taking up again the combinatorial model introduced by
GILLIS and EVEN [7] and “α-extending” it. Let P(n1, . . . , nm) be the set
of permutations on the n1 + · · ·+ nm elements

a1,1, . . . , a1,n1 ; . . . ; am,1, . . . , am,nm

and denote by D(n1, . . . , nm) the subset of P(n1, . . . , nm) consisting of
what we will call (a1, . . . , am)-derangements. These are permutations
where no element is allowed to go to one of its kind ; in other words,
columns of the form

a1,i . . . am,i
a1,j . . . am,j

are forbidden in the two-line representation of the permutation. The
following identity is due to GILLIS and EVENS [7] :

(1.5) I(n1, . . . , nm; 0) = cardD(n1, . . . , nm).

In order to have an extension for any α introduce for each permutation π
its number of cycles cycπ and define its weight by

(1.6) w(π) = (α+ 1)cycπ.

The polynomial

D(n1, . . . , nm;α) =
∑
π

w(π)
(
π ∈ D(n1, . . . , nm)

)
reduces to cardD(n1, . . . , nm) when α = 0. Our α-analog of the Gillis-
Even result now reads :

Theorem 1. — For each indeterminate α one has :

(1.7) I(n1, . . . , nm;α) = D(n1, . . . , nm;α).

As all the weights in D(n1, . . . , nm;α) are nonnegative whenever α >
−1, then the forementioned theorem implies that I(n1, . . . , nm;α) is also
nonnegative, as was proved by ASKEY et al. [1, 2].
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We give two proofs of THEOREM 1. The first one is based on the
combinatorial interpretation of the Laguerre polynomials. The product
(1.3) is expanded and the various terms interpreted in terms of generating
polynomials for permutations and injections (see sections 2 and 3). The
second one relies on an β-analog of the celebrated MACMAHON’s Master
Theorem [9, p. 97]. This β-analog has an interest of its own and will be
discussed in section 4. The second proof is then completed in section 5.

2. Cycles. — We will need two results that are fundamental in
the current combinatorial interpretation of special functions. First, the
generating function for the set P(n) of all the permutations on n elements
by number of cycles is given by (see, e.g., [10, p. 78])
(2.1)
w
(
P(n)

)
=
∑
π

w(π) = (α+1)n = (α+1)(α+2) . . . (α+n)
(
π ∈ P(n)

)
.

Let 1 ≤ k ≤ n and S be a (n − k)-element subset of the n-element
[n]. The set of injections from S into [n] will be denoted by Inj(S, n). An
injection from S to [n] consists of a (possibly empty) collection of cycles
within S and some paths that wander in S, but terminate at a point
outside S. Similarly, denote by cycπ the number of cycles of π and define
its weight by w(π) = (α+ 1)cycπ.

For example, if S = {1, 2, 3, 4, 5, 6} and n = 9, then (1, 3), (2),
4→ 5→ 7, 6→ 8 is an injection with weight (α+ 1)2.

The result analogous to (1.1) reads (see [6, lemma 2.1]) : if cardS =
n− k, then

(2.2) w
(
Inj(S, n)

)
=
∑
π

w(π) = (α+ 1 + k)n−k (π ∈ Inj(S, n)).

3. Proof of theorem 1. — By the definition of the Laguerre
polynomials

ni!L(α)
ni (x) =

ni∑
ki=0

(−1)ki
(
ni
ki

)
(α+ 1 + ki)ni−ki x

ki (i = 1, . . . ,m).

In (1.2) and (1.3) expand each Laguerre polynomial and integrate term
by term using the fact that (1/Γ(α+ 1))

∫∞
0
e−xxn+α dx = (α+ 1)n. This

leads to :

(3.1) I(n1, . . . , nm;α)

=
n1∑
k1=0

· · ·
nm∑
km=0

(α+ 1)k1+···+km

m∏
i=1

(−1)ni−ki
(
ni
ki

)
(α+ 1 + ki)ni−ki .
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Consider now any permutation in P(n1, . . . , nm) and write it in cycle form.
An element will be called incestuous, if it is sent to one of its own kind.
Denote by Incπ the set of all incestuous elements of π.

For example, in the permutation belonging to P(4, 5, 5)

(a1b1b2c3a2)(c2c1b3a3)(c4b4a4c5)

the elements b1, a2, c2, c5 are the incestuous elements.
Now call marked permutation an ordered pair (π, S) with π a permu-

tation and S a subset of Incπ and denote by M(n1, . . . , nm) the set of
marked permutations.

For example,
(a1b1b2c3a2)(c2c1b3a3)(c4b4a4c5)

is the marked permutation where the incestuous elements b1, c2, c5 are
marked (S = {b1, c2, c5}) while the incestuous element a2 is not marked.

Define the weight of each marked permutation (π, S) by

w′(π, S) = (−1)cardS(α+ 1)cycπ

and consider the generating polynomial for marked permutations :

M(n1, . . . , nm;α) =
∑
π

w′(π)
(
π ∈M(n1, . . . , nm)

)
.

This generating polynomial will be computed in two different ways. One
of these ways yields

(3.2) M(n1, . . . , nm;α) = D(n1, . . . , nm;α).

The other way will give :

(3.3) M(n1, . . . , nm;α) = I(n1, . . . , nm;α).

Consider the following weight preserving sign changing involution on
marked permutations. Look at the first incestuous element. If it is marked,
unmark it ; if it is unmarked, mark it. Of course, the number of cycles of the
permutation does not change (since there is no change in the underlying
permutation !). Only the parity of the number of marks changes, reversing
the sign of the weight. Accordingly, all the terms in M(n1, . . . , nm;α)
corresponding to permutations with incestuous elements can be arranged
in mutually cancelling pairs and their sum is therefore zero. All that
remains in M(n1, . . . , nm;α) are the terms corresponding to those marked
permutations (π, S) containing no incestuous elements and so S = ∅.
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But those marked permutations are simply the pairs (π, ∅) with π ∈
D(n1, . . . , nm) and they satisfy : w′(π, ∅) = w(π). Therefore (3.2) holds.

Now computeM(n1, . . . , nm;α) in a different way. For each i = 1, . . . ,m
let Si be a certain subset of {ai,1, . . . , ai,ni} of cardinality ni−ki and denote
by M(S) the subset of M(n1, . . . , nn) consisting of marked permutations
(π, S) with S = S1∪· · ·∪Sm. Also let P(S) the set of all π in P(n1, . . . , nm)
such that (π, S) ∈M(S). Clearly,

(3.4) w′
(
M(S)

)
= (−1)n1−k1+···+nm−kmw

(
P(S)

)
.

Lemma. — One has

(3.5) w
(
P(S)

)
= (α+ 1)k1+···+km

m∏
i=1

(α+ 1 + ki)ni−ki .

Proof. — From (2.1) and (2.2) it follows that the right-hand side of
(3.5) is the generating function for the product

P(k1, . . . , km)×
m∏
i=1

Inj(Si, ni)

by w. To prove the lemma it then suffices to construct a w-weight
preserving bijection π 7→ (π1, . . . , πm, σ) of P(S) onto that product.
Write π in cycle form. Then in each cycle of π delete all the elements
of S = S1 ∪ · · · ∪ Sm. What remains is a permutation written in cycle
form. Call it σ.

To get πi take all the cycles of π consisting only of elements of Si. Take
also the connected portions of Si lying in other cycles. Doing this will
result in a certain number of paths that wander through Si but terminate
in an element not in Si.

Clearly, σ belongs to P(k1, . . . , km) and each πi is an injection of Si into
{ai,1, . . . , ai,ni}. Moreover, the total number of cycles of σ, π1, . . . , πm is
equal to cycπ. Thus, the mapping is w-preserving. The reverse construc-
tion is immediate.

Example. — Take

n1 = 6 n2 = 6 n3 = 6
k1 = 3 k2 = 3 k3 = 3
S1 = {a1, a2, a3} S2 = {b1, b2, b3} S3 = {c1, c2, c3}
π = (a1a2)(a4b1b5a5a3)(b2b4c1c4c3c2c6)(c5a6)(b3)(b6)
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Then
σ = (a4b5a5)(b4c4c6)(c5c6)(b6)
π1 = (a1a2), a3 → a4

π2 = (b3), b1 → b5, b2 → b4

π3 = c1 → c4, c3 → c2 → c6

It follows from (3.4) and (3.5) that

w′
(
M(S)

)
= (−1)n1−k1+···+nm−km(α+ 1)k1+···+km

m∏
i=1

(α+ 1 + ki)ni−ki .

Hence

M(n1, . . . , nm;α) =
∑

w′
(
M(S)

)
=

n1∑
k1=0

· · ·
nm∑
km=0

m∏
i=1

(
ni
ki

)∑
w′
(
M(S)

)
=

n1∑
k1=0

· · ·
nm∑
km=0

(α+ 1)k1+···+km

×
m∏
i=1

(−1)ni−ki
(
ni
ki

)
(α+ 1 + ki)ni−ki ,

which is the expression found for I(n1, . . . , nm;α) in (3.1). Therefore, (3.3)
is proved and also THEOREM 1.

4. The β-analog of the MacMahon Master Theorem. — Let
D be the determinant det(δij − b(i, j)xj) (1 ≤ i, j ≤ m). The MacMahon
Master Theorem asserts that the coefficient of xn1

1 . . . xnmm in the expansion
of D−1 is equal to the coefficient of xn1

1 . . . xnmm in the product

(4.1)
(
b(1, 1)x1 + · · ·+b(1,m)xm

)n1
. . .
(
b(m, 1)x1 + · · ·+b(m,m)xm

)nm
.

It will be convenient to restate this statement in a slightly different
form. Let R(n1, . . . , nm) denote the set of all the rearrangements

r = r(1, 1) . . . r(1, n1) . . . r(m, 1) . . . r(m,nm)

of the word 1n1 . . .mnm and let

v(r) =
∏
i,j

b(i, r(i, j)) (1 ≤ i ≤ m; 1 ≤ j ≤ ni).
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Clearly, the coefficient of xn1
1 . . . xnmm in (4.1) is equal to the sum of all the

v(r) with r running over all the rearrangements of 1n1 . . .mnm .
Next, consider a permutation π belonging to P(n1, . . . , nm) (defined in

section 1). If π sends (i, j) over (i′, j′), write i′ = cπ(i, j). Furthermore,
define

v(π) =
∏
i,j

b(i, cπ(i, j)) (1 ≤ i ≤ m; 1 ≤ j ≤ ni).

To each rearrangement r in R(n1, . . . , nm) there correspond exactly
n1! . . . nm! permutations π in P(n1, . . . , nm) with the property that
v(π) = v(r). Therefore, the coefficient of xn1

1 . . . xnmm in (4.1) is also equal
to

(4.2) n1! . . . nm!
∑
π

v(π) (π ∈ P(n1, . . . , nm).

The MacMahon Master identity can then be restated as

(4.3)
∑ xn1

1

n1!
. . .

xnmm
nm!

v
(
P(n1, . . . , nm)

)
= D−1.

Next define the β-weight v(β;π) of each permutation π in P(n1, . . . , nm)
by

v(β;π) = βcycπv(π).

Theorem (β-analog of the MacMahon Master Theorem). — The
following identity holds :

(4.4)
∑ xn1

1

n1!
. . .

xnmm
nm!

v
(
β;P(n1, . . . , nm)

)
= D−β .

Proof. — Consider the partitional complex (see, e.g., [4, 5]) of the
permutations and denote by CP(n1, . . . , nm) the subset of the connected
permutations in P(n1, . . . , nm). As the weight v(β; ·) is multiplicative
[4, 5], the following identity holds :

(4.5)
∑ xn1

1

n1!
. . .

xnmm
nm!

v
(
β;P(n1, . . . , nm)

)
= exp

∑ xn1
1

n1!
. . .

xnmm
nm!

v
(
β; CP(n1, . . . , nm)

)
.

From (4.3) and (4.5) with β = 1

∑ xn1
1

n1!
. . .

xnmm
nm!

v
(
CP(n1, . . . , nm)

)
= −LogD.
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But v(β;π) = βv(π) for every connected permutation, so that

∑ xn1
1

n1!
. . .

xnmm
nm!

v
(
β; CP(n1, . . . , nm)

)
= −βLogD,

and finally (4.4) holds because of (4.5).

5. Second proof of theorem 1. — As was noted by ASKEY [1, 2],
(1.4) is an immediate consequence of (1.1). Rewriting (1.4) for α = 0 using
GILLIS-EVEN’s result (1.5) yields :
(5.1)∑

cardD(n1, . . . , nm)
xn1

1

n1!
. . .

xnmm
nm!

=
(
1−σ2− 2σ3− · · · − (m− 1)σm

)−1
.

Take again the v-weight of section 4 with b(i, j) = δij . Then,

(5.2) cardD(n1, . . . , nm) = v
(
P(n1, . . . , nm)

)
.

Thus for this particular v identity (4.4) holds with β = α+ 1 and

D =
(
1− σ2 − 2σ3 − · · · (m− 1)σm

)
.

On the account of (1.2), (1.3), (1.4) and (4.4) with this particular weight
v we conclude that (1.7) also holds.
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que des polynômes eulériens. — Berlin, Springer-Verlag,  (Lecture Notes
in Math., 138).

[6] FOATA (Dominique) and STREHL (Volker). — Combinatorics of Laguerre poly-
nomials, Enumeration and Design [Waterloo. June–July  : D.M. Jackson
and S.A. Vanstone, eds.], p. 123–140. — Toronto, Academic Press, .

[7] GILLIS (J.) and EVEN (S.). — Derangements and Laguerre polynomials, Proc.
Cambridge Phil. Soc., t. 79, , p. 135–143.

[8] ISMAIL (Mourad E.H.) and TAMHANKAR (M.V.). — A combinatorial approach
to some positivity problems, S.I.A.M. J. Math. Anal., t. 10, , p. 478–485.

24



WEIGHTED DERANGEMENTS

[9] MACMAHON (Percy Alexander). — Combinatory Analysis, vol. 1. — Cambridge,
Univ. Press, . (Reprinted by Chelsea, New York, ).

[10] RIORDAN (John). — An Introduction to Combinatorial Analysis. — New York,
John Wiley, .

The present paper has been completed and updated to become :

Dominique Foata and Doron Zeilberger, Laguerre polynomials, weighted
derangements and positivity, SIAM J. Discrete Math., vol. 1, , p. 425–
433.

Dominique Foata,
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